$\lambda^{3}\sigma^{3}$ P and $\lambda^{5}\sigma^{5}$ P Derivatives of (*E*)-1,2-Difluoro-2-(pentafluoro- λ^{6} -sulfanyl)ethylene and (*Z*)-1,2,3,3,3-Pentafluoropropylene

Holger Wessolowski, Andreas Gentzsch, and Gerd-Volker Röschenthaler*

Institut für Anorganische und Physikalische Chemie, Universtät Bremen, Leobener Strasse, 28334 Bremen, Germany

Gary L. Gard

Department of Chemistry, Portland State University, Portland, Oregon 97207-0751

Received 23 March 1996; revised 9 May 1996

ABSTRACT

For the first time, the (E)-1,2-difluoro-2-(pentafluoro- λ^6 -sulfanyl)ethenyl group has been bonded to $\lambda^3\sigma^3$ phosphorus using a Grignard reagent. Similar phosphorus derivatives containing the (Z)-1,2,3,3,3-pentafluoropropenyl moiety were also synthesized for comparison. In three cases, hexafluoroacetone was added to form 4,4,5,5-tetrakis(trifluoromethyl) 1,3,2 $\lambda^5\sigma^5$ -dioxaphospholanes. © 1997 John Wiley & Sons, Inc. Heteroatom Chem 8:467–471, 1997

INTRODUCTION

The fluoroalkenes $R^{F}C(R) = CF_{2}$ ($R^{F} = SF_{5}$, CF_{3} ; R = F, H) show similarities in their reactions with silulated phosphites and tri-*n*-butylphosphine [1–4]. Grignard reagents prepared from iodoperfluoroalkenes, $CF_{2} = CFI$ or (*Z*)- $CF_{3}CF = CFI$, have been used to obtain the respective phosphonites [5–8]. Compounds of the type (*Z*)- $CF_{3}CF = CFPR_{2}$ (R = OEt,

NEt₂) were reacted with hexafluoroacetone to give a 1,3,2- $\lambda^5\sigma^5$ -dioxaphospholane for R = OEt (1:2 molar ratio) and, surprisingly, a 1,2 $\lambda^5\sigma^5$ -oxaphospholene-(3) for R = NEt₂ (1:1 molar ratio) [9]. Since (*E*)-1,2-difluoro-1-iodo-2-(pentafluoro- λ^6 -sulfanyl)-ethylene is now available [2,10], preparation of phosphonites (*E*)-F₅SCF = CFPR₂ is possible, and these compounds can be compared with their (*Z*)-CF₃CF = CFPR₂ analogues.

RESULTS AND DISCUSSION

The Grignard reagents "(*E*)-F₅SCF = CFMgI" and "(*Z*)-CF₃CF = CFMgI" have now been generated from magnesium and (*E*)-1,2-difluoro-1-iodo-2-(pentafluoro- λ^6 -sulfanyl)ethylene (1) [2,10] or (*Z*)-1,2,3,3,3pentafluoro-1-iodo-propylene 2 [11] and reacted with some selected phosphorus(III) chlorides ClPR¹R², 3**a**–**e** [R¹ = R² = OEt (**a**) [12]; R¹ = OMe, R² = NMe₂ (**b**); R¹ = OEt, R² = NEt₂ (**c**); R¹R² = OCH₂CH₂NMe (**d**); R¹ = R² = *i*Pr (**e**)] to yield the $\lambda^3\sigma^3$ P derivatives 4**a**–**e** or 5**a**–**e** (Scheme 1). Chlorobis(diethylamido) phosphite did not yield the expected phosphonoamidite (*E*)-R^FCF = CFP(NEt₂)₂ (R^F = F₅S) under the reaction conditions applied; a nonseparable mixture containing nonidentified species having been formed. The analogue with R^F =

^{*}To whom correspondence should be addressed. © 1997 John Wiley & Sons, Inc. CCC 1042-7163/97/060467-05

SCHEME 1

CF₃, however, had previously been prepared [8]. Hexafluoroacetone has now been added to **4b**, **5b**, and **5c** in a 2:1 stoichiometry to furnish the 4,4,5,5-tetrakis(trifluoromethyl)-1,3,2 $\lambda^5\sigma^5$ -dioxaphospholanes **6b**, **7b**, and **7c**, exclusively, as in the case of **5a** [9] (Scheme 1). In the case where the R^FCF = CF group was involved in the ring formation, no 1:1 addition product was obtained [9]. The new compounds were colorless, moisture- and oxygen-sensitive liquids.

The ¹H, ¹⁹F, and ³¹P NMR data for compounds 4– 7 support the proposed structures (Tables 1 and 2). The phosphorus resonances were found in the expected range [3]. Replacing the SF₅ group with CF₃ did not significantly alter the δ_{P} values for the same substituent R. The large coupling constants ${}^{3}J_{F^{1}F^{2}}$ (>136 Hz) are due to *trans* substitution for all compounds [1-3]. In the case of the amidophosphonite 4c, the overlapping signals for F¹ and F² made it impossible to observe ${}^{3}J_{F^{1}F^{2}}$. The F¹ and F² resonances for the species containing the SF_5 group (4 and 6) appear at lower field than the respective signals for CF₃ analogues whose F¹ resonances for the $\lambda^3 \sigma^3 P$ species (5) were clearly observed at higher field than for the F² signals; the opposite being found for the two phosphoranes (7b and 7c). The difference $|\delta_{F}(F^{1}) \delta_{\rm F}({\rm F}^2)$ is much smaller for the SF₅-substituted compounds. Coupling constants ${}^{2}J_{PF}$, ${}^{3}J_{F^{1}F^{2}}$, and ${}^{3}J_{F^{2}P}$ are of comparable magnitude for the two classes of phosphorus derivatives. Two broad signals were found for the four CF₃ groups bonded to the dioxaphospholane ring system in the $\lambda^5 \sigma^5 P$ species **6b** and **7b**, due to a slowing down on the NMR time scale, at room temperature, of the first step of a two-step pseudorotation process [14].

EXPERIMENTAL

The appropriate precautions in handling moistureand oxygen-sensitive compounds were observed throughout this work. Elemental analysis: Mikroanalytisches Laboratorium Beller, Göttingen. MS: MAT 8222 (EI, electron energy 70 eV). IR: BioRad Digilab FTS-7 spectrometer, liquids or solids as capillary film between NaCl disks. NMR: AC 80, operating at 80.13 MHz (¹H, internal standard TMS), 75.39 MHz (¹⁹F, internal standard CCl₃F), and 32.44 MHz (³¹P, external standard 85% H₃PO₄). Compounds 1 [2], 2 [11], and **3a–e** [15–19] were prepared according to literature procedures.

General Procedure for the Synthesis of Compounds 4–7 (see Table 3). In a typical experiment, the iodoolefins 1 or 2 (15 mmol) in 15 mL of diethyl ether were added at -40° C (1) or 20° C (2) to magnesium (3.6 g, 15 mmol) in 10 mL of diethyl ether. The mixture was reacted at $-20 \div -10^{\circ}$ C (1) or $-10 \div 0^{\circ}$ C (2) and stirred for 4 hours until the magnesium had completely disappeared. The phosphorus chloride (15 mmol) in 15 mL of diethyl ether was added at -80° C (1) or at -10° C (2), the reaction mixture then being allowed to warm to ambient temperature and stirred for 18 hours. All volatile materials were pumped off at 0.001 mm and collected. The fractional distillation furnished colorless products.

(*E*)-[1,2-Difluoro-1-(pentafluoro- λ^6 -sulfanyl)]ethenyl-diethylphosphonite (4a). MS(120°C) m/e (%): 310 (M⁺, 4), 271 (M⁺ - F - HF, 27), 265 (M⁺ - OC₂H₅, 6), 254 (M⁺ - 2 C₂H₄, 7), 127 (SF₅⁺, 21), 121 [P(OC₂H₅)₂⁺, 58], 105 [PC₂H₅(OC₂H₅)⁺, 82], 89 (SF₃⁺, 39), 77 [P(H)OC₂H₅⁺, 52], 65 [P(OH)₂⁺, 100], and other fragments. IR: $\tilde{\nu}$ (cm⁻¹): 1672 w (C=C), 879 vst (SF), 598 st (SF), and other bands. Anal. calcd for C₆H₁₀F₇O₂PS (310.17): C, 23.23; H, 3.25; F, 42.88; P, 9.99. Found: C, 22.88; H, 3.16; F, 41.90; P, 9.61.

(*E*)-[1,2-Difluoro-1-(pentafluoro- λ^6 -sulfanyl)]ethenyl-dimethylamidomethyl-phosphonite (4b). MS (20°C) *m*/e (%): 295 (M⁺, 18), 264 (M⁺ - OCH₃, 5), 251 [M⁺ - N(CH₃)₂, 6], 127 (SF₅⁺, 14), 106 [P(OCH₃)N(CH₃)₂⁺, 100], 94 [FPN(CH₃)₂⁺, 80], 89 (SF₃⁺, 39), 81 (C₂F₃⁺/FPOCH₃⁺, 35), and other fragments. IR: \tilde{v} (cm⁻¹): 1616 w (C=C), 877 vst (SF), 596

			Sa		$\delta^a_{ extsf{ extsf extsf{ extsf} extsf{ extsf{ extsf{ extsf{ extsf{ extsf} extsf{ extsf{ extsf} extsf{ extsf} extsf{ extsf{ extsf} ex$				
. .	CH₃(OR)	$CH_3(NR_2)$	CH₂(OR)	$CH_2(NR_2)$	F^1	F ²	$SF^{3}_{4}F^{4}$	$SF^{3}_{4}F^{4}$	∂_P^a
Compounds	(³ Ј _{РН})	(³ J _{PH})	(³ J _{PH} , ³ J _{HH})	(³ J _{PH} , ³ J _{HH})	(² J _{PF} , ⁴ J _{FF})	$({}^{3}J_{F^{1}F})$	(³ J _{F²F})	(³ J _{F²F})	(³ J _{F²P})
4a	1.3		4.1 (8.4. 7.0)		− 142.9 ^b (55.2, 3.8)	−146.5° (136.0)	57.3 (20.8)	72.5 (2.5)	134.8 (34.5)
4b	3.6 (14.0)	2.8 (9.5)	(- 147.6 ^r (41.5, 3.7)	-148.1 ^g	52.9 ^d (18.8)	68.5 ^e (2.7)	119.4 (35.3)
4c	1.3	1.1	3.9 (10.0, 7.0)	3.2 (9.8, 7.1)	- 140.8-142.1 ^h		57.1 ^ª	73.8 ^e	118.7
4d		2.8 (13.4)	4.3 ^{<i>i</i>}	3.1 ^{<i>i</i>}	– 151.1° (52.0, 3.7)	−147.9 (136.2)	53.0 ^{<i>d</i>} (19.8)	68.0 ^e (2.5)	113.8 (24.0)
4e ^{<i>j</i>}	1.3 (5.2)				– 133.5 [,] (62.5, 3.7)	-133.2 ^g	57.6 [⊿] (17.9)	73.2 ^e (2.9)	7.2 (25.1)
6b [/]	3.5 (13.6)	2.7 (11.6)			- 143.5 ^m (83.5, 2.5)	−139.6 (136.6)	52.1 ^{<i>d</i>} (22.2)	66.9 ^{<i>c</i>} (4.0)	-44.7

TABLE 1	¹ H, ¹⁹ F	, and ³¹ P	NMR Da	ta for (Compounds 4	and 6	(J values	s are giv	en in Hz)
---------	---------------------------------	-----------------------	--------	----------	-------------	-------	-----------	-----------	-----------

^aHighfield shifts from TMS, CCl₃F, and 85% H₃PO₄ were given negative signs

[⊳]ddd. ^cddpd. ₫dm. ^eSignal splits into 9 lines, Ref. [13]. ^fdd. ^{*g*}dpd, ${}^{3}J_{F}^{1F}$ not obtained. ^{*h*}Overlapping multiplets. $^{\prime}$ m. $\delta_{\rm H} = 2.3$

			Sa		$\delta^a_{\scriptscriptstyle F}$				
Compounds	CH ₃ (OR) (³ J _{PH})	CH ₃ (NR ₂) (³ J _{PH})	о _н CH₂(OR) (³J _{PH} , ³J _{HH})	CH ₂ (NR ₂) (³ J _{PH} , ³ J _{HH})	F ¹ (² J _{PF} , ⁴ J _{FF3})	F ² (³ J _{F¹F})	CF ₃ (³ J _{F²F} , ⁴ J _{PF})	δ^a_P (${}^3J_{F^2P}$)	
5a ^{<i>b</i>}	1.2		3.7–4.2 ^c (-, 7.1)		– 171.5 (52.3, 10.1)	- 158.1 (142.0)	-72.4 (21.2, 3.8)	134.2 (31.2)	
5b	3.6 (13.9)	2.8 (9.0)			- 172.0 (40.0, 10.3)	- 155.7 (142.0)	- 72.2 (21.5, 4.9)	117.5 (33.4)	
5c	1.3	1.1	3.9 (10.1, 7.3)	3.2 (9.6, 7.1)	- 170.9 (40.3, 10.3)	- 154.1 (21.4, 5.2)	-72.4 (41.7)	112.3	
5d		2.8 (13.5)	4.3 (7.8, 6.8)	3.1 (7.9, 6.8)	– 175.3 (50.0, 10.5)	154.2 (140.3)	- 72.3 (21.3, 1.8)	111.5 (20.5)	
5e ^{<i>d</i>}	1.2 (4.7)				- 160.9 (70.5, 10.3)	- 146.3 (150.5)	- 71.7 (21.3, 1.8)	-4.3 (7.4)	
7b ^e	3.7 (13.3)	2.9 (11.3)			– 150.9 (86.7, 21.6)	- 163.3 (137.8)	- 72.4 (9.5, 0.5)	- 45.9 (11.5)	
7c ^{<i>t</i>}	1.3	1.1	3.9–4.3 (<i>-</i> , 8.3)	3.3 (14.3, 7.1)	148.0 (90.5, 21.7)	- 160.4 (136.6)	-72.3 (9.2, 0.6)	- 46.7 (12.5)	

TABLE 2 ¹H, ¹⁹F, and ³¹P NMR Data for Compounds 5 and 7 (J values are given in Hz)

 a Highfield shifts from TMS, CCl₃F, and 85% H₃PO₄ were given negative signs.

^{*b*} Ref. [8]. ^{*c*}ABM₃X spin system, not resolved.

 $\begin{array}{l} \vartheta_{H} = 2.2 \ (^{2}H_{PH} = 14.0, \ ^{3}J_{HH} = 6.9). \\ \vartheta_{F} = -71.5 \ \div \ -72.0 \ (\mathsf{CF}_{3}, 6 \ \mathsf{F}), \ -73.0 \ \div \ -73.9 \ (\mathsf{CF}_{3}, 6 \ \mathsf{F}). \\ \vartheta_{F} = -71.2 \ \div \ -73.4 \ (\mathsf{CF}_{3}, 12 \ \mathsf{F}). \end{array}$

Compound	Reactants [g (mmol)]	Yield [g (%)]	В.р. (°С/тт)
4a	1 : 4.0 (12.7); Mg: 0.3 3 a: 2.0 g (12.7)	2.0 (50)	12/20
4b	1 : 4.5 (14.1); Mg: 0.3 3b : 2.0 (13.8)	1.9 (45)	60/20
4c	1 : 4.4 (13.9); Mg: 0.3 3c : 2.6 (13.9)	3.0 (65)	90/20
4d	1: 3.7 (11.8); Mg: 0.3 3d: 1.6 (11.8)	1.0 (28)	47/20
4e	1 : 5.8 (18.3); Mg: 0.5 3e : 2.8 (18.0) ^a	3.6 (65)	74/20
5b	2 : 12.9 (50); Mg: 1.2 3b : 7.1 (50)	8.4 (71)	38/12
5c	2 : 19.4 (75); Mg: 1.8 3c : 13.8 (75)	15.6 (74)	67/12
5d	2 : 6.5 (25); Mg: 0.6 3d : 4.6 (25)	2.9 (49)	55/12
5e	2 : 6.5 (25); Mg: 0.6 3e : 3.8 (25)	2.1 (34)	59/12

 TABLE 3
 Experimental Details for the Preparation of Compounds 4 and 5 (for 5a, see Ref. [8])

^aAddition of **3e** at -30° C.

vst (SF), and other bands. Anal. calcd for $C_5H_9F_7NOPS$ (295.16): C, 20.35; H, 3.07; F, 45.06; P, 10.49. Found: C, 20.33; H, 3.01; F, 44.80; P, 10.26.

(*E*)-[1,2-Difluoro-1-(pentafluoro-λ⁶-sulfanyl)]ethenyl-diethylamidoethyl-phosphonite (4c). MS (140°C) m/e (%): 337 (M⁺, 29), 322 (M⁺ - CH₃, 7), 292 (M⁺ - OC₂H₅, 9), 237 [M⁺ - N(C₂H₅)₂ - C₂H₄, 23], 210 (M⁺ - SF₅, 2), 148 [P(OC₂H₅)N(C₂H₅)₂⁺, 100], 120 [P(OH)N(C₂H₅)₂⁺, 89], 89 (SF₃⁺, 7), 72 [N(C₂H₅)₂⁺, 18], and other fragments. IR: \tilde{v} (cm⁻¹): 1635 vw (C=C), 873 vst (SF), 596 vst (SF), and other bands. Anal. calcd for C₈H₁₅F₇NOPS (337.24): C, 28.49; H, 4.48; F, 39.43; P, 19.18. Found: C, 28.31; H, 4.42; F, 39.20; P, 19.07.

2-[(*E*)-[1,2-Difluoro-1-(pentafluoro- λ^6 -sulfanyl)]ethenyl]-3-methyl-1,3,2 $\lambda^3 \sigma^3$ -oxazaphospholan (4d). MS (20°C) m/e (%): 293 (M⁺, 54), 127 (SF₅⁺, 14), 104 (POC₂H₄NCH₃⁺, 100), 89 (SF₃⁺/POC₂H₄N⁺, 17), and other fragments. IR: $\tilde{\nu}$ (cm⁻¹): 1642 vw (C=C), 875 vst (SF), 595 vst (SF), and other bands. Anal. calcd for C₅H₇F₇NOPS (293.14): C, 20.49; H, 2.41; F, 45.37; P, 10.57. Found: C, 20.11; H, 2.31; F, 44.60; P, 10.00.

(E)-[1,2-Difluoro-I-(pentafluoro- λ^6 -sulfanyl)]-

ethenyl-diisopropylphosphine (4e). MS (20°C) *m/e* (%): 306 (M⁺, 20), 264 (M⁺ - C₃H₆, 3), 189 (SF₅CF = CF⁺, 3), 127 (SF₅⁺, 21), 89 (SF₃⁺, 39), 43 (C₃H₇⁺, 100), and other fragments. IR: $\tilde{\nu}$ (cm⁻¹): 1604 vw (C=C), 878 vst (SF), 595 vst (SF), and other bands. Anal. calcd for C₈H₁₄F₇PS (306.22): C, 31.38; H, 4.61; F, 43.43; P, 10.11. Found: C, 31.17; H, 4.60; F, 42.80; P, 9.97.

(Z)-1,2,3,3,3-Pentafluoropropenyl-dimethylamidomethylphosphonite (5b). MS (150 °C) m/e (%): 237 (M⁺, 47), 206 (M⁺ – OCH₃, 5), 193 [M⁺ – N(CH₃)₂, 9], 106 [P(OCH₃)N(CH₃)₂⁺, 100], 94 [FPN(CH₃)₂⁺, 20], 93 (C₃F₃⁺, 22), 81 (C₂F₃⁺/FPOCH₃⁺, 34), 76 [HPN(CH₃)₂⁺, 33], 69 (CF₃⁺, 16), 63 (HPOCH₃⁺, 36), 60 (PNCH₃⁺, 19), and other fragments. IR: $\tilde{\nu}$ (cm⁻¹): 1677 vw (C = C). Anal. calcd for C₆H₉F₅NOP (237.11): C, 30.39; H, 3.38; F, 40.06; P, 13.06. Found: C, 30.21; H, 3.64; F, 40.10; P, 13.02.

(Z)-1,2,3,3,3-Pentafluoropropenyl-diethylamidoethylphosphonite (5c). MS (150°C) m/e (%): 279 (M⁺, 33), 264 (M⁺ – CH₃, 15), 234 (M⁺ – OC₂H₅, 15), 220 (M⁺ – CH₃ – HNC₂H₅, 15), 179 (CF₃CF=CFPOH⁺, 32), 148 [P(OC₂H₅)N(C₂H₅)₂⁺, 93], 120 [P(OH)N(C₂H₅)₂⁺, 100], 72 [N(C₂H₅)₂⁺, 22], 76 [HPN(CH₃)₂⁺, 33], and other fragments. IR: $\tilde{\nu}$ (cm⁻¹): 1679 vw (C=C). Anal. calcd for C₉H₁₅F₅NOP (279.19): C, 38.72; H, 5.42; F, 34.02; P, 11.09. Found: C, 38.69; H, 5.48; F, 34.00; P, 11.01.

2-[(Z)-1,2,3,3,3-Pentafluoropropenyl]-3-methyl-1,3,2 $\lambda^3\sigma^3$ -oxaza-phospholan (5d). MS (140°C) m/e (%): 235 (M⁺, 9), 104 (POC₂H₄NCH₃⁺, 100), 93 (C₃F₃⁺, 6), 69 (CF₃⁺, 5), 60 (PNCH₃⁺, 19), and other fragments. IR: $\tilde{\nu}$ (cm⁻¹): 1668 vw (C=C) and other bands. Anal. calcd for C₆H₇F₅NOP (235.10): C, 30.65; H, 3.00; F, 40.41; P, 13.18. Found: C, 30.34; H, 3.14; F, 40.00; P, 13.42.

(Z)-1,2,3,3,3-Pentafluoropropenyl-diisopropylphosphine (5e). MS (140°C) *m/e* (%): 248 (M⁺, 6), 206 (M⁺ - C₃H₆, 3), 43 (C₃H₇⁺, 100), and other fragments. IR: $\tilde{\nu}$ (cm⁻¹): 1674 w (C=C) and other bands. Anal. calcd for C₉H₁₄F₅P (248.18): C, 43.56; H, 5.69; F, 38.28; P, 12.48. Found: C, 42.53; H, 5.61; F, 35.60; P, 12.24.

2-[(E)-[1,2-Difluoro-1-(pentafluoro- λ^6 -sulfanyl)]ethenyl]-2-dimethylamino-2-methoxy-4,4,5,5-tetrakis(trifluoromethyl)-1,3,2 $\lambda^5\sigma^5$ -dioxaphospholane (6b). Compound 4b (0.8 g, 2.6 mmol) in 5 mL diethylether and 1.6 g (6.6 mmol) hexafluoroacetone were reacted for 4 days. Fractional distillation at 43°C/0.001 mm yielded 1.1 g (67.6%) 6b. MS (150°C) *m/e* (%): 627 (M⁺, >0.05), 608 (M⁺ - F, 10), 596 (M⁺ - OCH₃, 46), 583 [M⁺ - N(CH₃)₂, 100], 558 (M⁺ -CF₃, 26), 438 (M⁺ - SF₅CF = CF, 18), 127 (SF₅⁺, 14), 106 [P(OCH₃)N(CH₃)₂⁺, 15], 89 (SF₃⁺, 4), 69 (CF₃⁺, 19), and other fragments. IR: $\tilde{\nu}$ (cm⁻¹): 1653 vw (C=C), 879 vst (SF), 597 vst (SF), and other bands. Anal. calcd for C₁₁H₉F₁₉NO₃PS (627.20): C, 21.07; H, 1.45; P, 4.94. Found: C, 21.36; H, 1.83; P, 5.63.

2-[(Z)-1,2,3,3,3-Pentafluoropropenyl]-2-dimethylamino-2-methoxy-4,4,5,5-tetrakis(trifluoromethyl)-1,3,2 $\lambda^5\sigma^5$ -dioxaphospholane (7b). Compound 5b (2.0 g, 8.5 mmol) and 2.8 g (17.0 mmol) hexafluoroacetone were reacted for 12 hours. Fractional distillation at 41°C/0.001 mm yielded 4.5 g (93.2%) 7b. MS (150 °C) *m/e* (%): 550 (M⁺ – F, 8), 538 (M⁺ – OCH₃, 47), 525 [M⁺ – N(CH₃)₂, 100], 500 (M⁺ – CF₃, 28), 438 (M⁺ – CF₃CF=CF, 10), 106 [P(OCH₃)N(CH₃)₂⁺, 30], 81 (C₂F₃⁺/FPOCH₃⁺, 24), 69 (CF₃⁺, 38), and other fragments. IR: $\tilde{\nu}$ (cm⁻¹): 1682 vw (C=C). Anal. calcd for C₁₂H₉F₁₇NO₃P (569.16): C, 25.32; H, 1.59; F, 56.75; P, 5.44. Found: C, 25.44; H, 1.71; F, 56.20; P, 5.58.

2-[(Z)-1,2,3,3,3-Pentafluoropropenyl]-2-diethylamino-2-ethoxy-4,4,5,5-tetrakis(trifluoromethyl)-1,3,2 $\lambda^5 \sigma^5$ -dioxaphospholane (7c). Compound 5c (4.2 g, 15.0 mmol) and 5.0 g (30.0 mmol) hexafluoroacetone were reacted for 12 hours. Fractional distillation at 52°C/0.001 mm yielded 7.7 g (83.7%) 7c. MS (150°C) *m/e* (%): 566 (M⁺ – OC₂H₅, 33), 511 [M⁺ – N(C₂H₅)₂⁻ C₂H₄, 100], 345 [CF₃CF = CFP(OH) = C(CF₃)₂⁺, 38], 148 [CF₃CF = CF(OH)⁺, 20], 122 [FPN(C₂H₅)₂⁺, 29], 97 (OCCF₃⁺, 29), 69 (CF₃⁺, 48), and other fragments. IR: $\tilde{\nu}$ (cm⁻¹): 1688 vw (C=C). Anal. calcd for C₁₅H₁₅F₁₇NO₃P (611.24): C, 29.48; H, 2.47; F, 52.84; P, 5.07. Found: C, 29.79; H, 2.64; F, 51.90; P, 5.24.

ACKNOWLEDGMENTS

The authors are very grateful to the Hoechst AG, Frankfurt am Main, Germany, for generous gifts of chemicals. The Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie are thanked for financial support.

REFERENCES

- H. Wessolowski, G.-V. Röschenthaler, R. Winter, G. L. Gard, Z. Naturforsch. B, 46, 1991, 126.
- [2] H. Wessolowski, G.-V. Röschenthaler, R. Winter, G. L. Gard, Z. Naturforsch. B, 46, 1991, 123.
- [3] U. von Allwörden, G.-V. Röschenthaler, Chemiker-Ztg., 112, 1988, 69.
- [4] H. Wessolowski, G.-V. Röschenthaler, R. Winter, G. L. Gard, *Phosphorus, Sulfur and Silicon*, 60, 1991, 201.
- [5] A. H. Cowley, M. W. Taylor, J. Am. Chem. Soc., 91, 1969, 1929.
- [6] H. G. Horn, R. Köntges, F. Kolkmann, H. C. Marsmann, Z. Naturforsch. B, 33, 1978, 1422.
- [7] A. A. Kadyrov, E. M. Rokhlin, M. V. Galakhov, Izv. Akad. Nauk SSSR, Ser. Khim., 1988, 1885.
- [8] A. Gentzsch, G.-V. Röschenthaler, *Chemiker-Ztg.*, 114, 1990, 6.
- [9] A. N. Chernega, A. A. Kolomeitsev, Yu. L. Yagupolskij, A. A. Gentzsch, R.-D. Hund, G.-V. Röschenthaler, J. Fluorine Chem., 60, 1993, 263.
- [10] H. Wessolowski, G.-V. Röschenthaler, R. Winter, G. L. Gard, G. Pon, R. Willett, *Eur. J. Solid State In*org. Chem., 29, 1992, 1173.
- [11] P. L. Heinze, T. D. Spawn, D. J. Burton, S. Shin-Ya, J. Fluorine Chem., 38, 1988, 131.
- [12] For the synthesis of 5a ($R^F = CF_3$, R = OEt), see Ref. [9].
- [13] N. Boden, J. Feeney, L. H. Sutcliffe, Spectrochim. Acta, 21, 1965, 627.
- [14] G.-V. Röschenthaler, J. A. Gibson, R. Starke, R. Schmutzler, J. Chem. Soc. Dalton Trans., 1977, 450.
- [15] Nippon Chemical Ind. C. Ltd. Jpn Kokai Koho HP 5846069 (8346069), C. A. 99, 1983, 195221.
- [16] S. L. Beaucage, M. H. Caruthers, *Tetrahedron Lett.*, 22, 1981, 1859.
- [17] L. J. McBride, M. H. Caruthers, *Tetrahedron Lett.*, 24, 1983, 245.
- [18] H. J. Lucas, F. W. Mitchell, C. N. Scully, J. Am. Chem. Soc., 72, 1950, 5491.
- [19] W. Voskoil, J. F. Arens, Rec. Trav. Chim., 81, 1962, 993.